

Living network meta-analysis

Living Evidence Network "state of the science" webinar

21 Mar 2019

Dr Anna Chaimani

Senior Research Fellow Research Centre of Epidemiology and Statistics, Paris Descartes University

Dr Sam Whittle

Senior Consultant Rheumatologist, Queen Elizabeth Hospital Senior Lecturer, University of Adelaide

Trusted evidence. Informed decisions. Better health.

LIVING NETWORK META-ANALYSIS the next step in evidence synthesis

Anna Chaimani

Research Center of Epidemiology & Statistics, Sorbonne Paris Cité (CRESS-UMR1153), Paris Descartes University

Webinar on living network meta-analyses 21 March 2019

Acknowledgements: Georgia Salanti, Dimitris Mavridis, Philippe Ravaud, Perrine Crequit, Andrea Cipriani

Outline

- Introduction to network meta-analysis (NMA)
- Example of a living NMA (LNMA)
- Challenges in the process of LNMAs
- Future work on LNMAs

Introduction to network meta-analysis

Why we need network meta-analysis?

"Although Mirtazapine is likely to have a faster onset of action than Sertraline and Paroxetine no significant differences were observed..."

...meta-analysis highlighted a trend in favour of Sertraline over other Fluoxetine"

...statistically significant differences in terms of efficacy between Fluoxetine and Venlafaxine, but the clinical meaning of these differences is uncertain..."

"Venlafaxine tends to have a favorable trend in response rates compared with duloxetine"

Indirect and mixed comparisons

Indirect and mixed comparisons

Agom	0·72	0.80	0 • 89	0 · 57	0.62	0 · 97	0.85	0.69	0 · 79	0.81	0 · 70	0.81	0 · 53	0.86	0.69	0·74	1 · 24
	(0·55 to 0·92)	(0.54 to 1.15)	(0 • 66 to 1 • 19)	(0 · 42 to 0 · 77)	(0.47 to 0.82)	(0 · 74 to 1 · 27)	(0.68 to 1.05)	(0.51 to 0.97)	(0 · 58 to 1 · 09)	(0.61 to 1.05)	(0 · 44 to 1 · 14)	(0.65 to 1.00)	(0 · 36 to 0 · 80)	(0.66 to 1.13)	(0.48 to 0.98)	(0·58 to 0·92)	(0 · 71 to 2 · 19)
0·96	Amit	1 · 10	1 · 23	0 · 79	0.87	1 · 35	1 · 18	0·97	1 · 10	1 · 12	0.98	1 · 12	0 · 74	1 · 20	0.96	1 · 02	1 · 72
(0·76 to 1·24)		(0 · 78 to 1 · 58)	(0 · 94 to 1 · 64)	(0 · 60 to 1 · 05)	(0.66 to 1.15)	(1 · 05 to 1 · 74)	(0 · 99 to 1 · 42)	(0·74 to 1·24)	(0 · 84 to 1 · 45)	(0 · 89 to 1 · 42)	(0.62 to 1.55)	(0 · 95 to 1 · 34)	(0 · 51 to 1 · 10)	(0 · 97 to 1 · 47)	(0.70 to 1.31)	(0 · 83 to 1 · 26)	(1 · 00 to 3 · 05)
0 • 87	0.91	Bupr	1 · 11	0 · 71	0 · 78	1 · 23	1.07	0.87	1.00	1.01	0.89	1 · 02	0.67	1.08	0 · 87	0.92	1 · 55
(0 • 59 to 1 • 30)	(0.62 to 1.31)		(0 · 76 to 1 · 67)	(0 · 49 to 1 · 07)	(0 · 53 to 1 · 18)	(0 · 84 to 1 · 80)	(0.76 to 1.50)	(0.59 to 1.30)	(0.66 to 1.49)	(0.70 to 1.47)	(0.51 to 1.54)	(0 · 73 to 1 · 43)	(0.42 to 1.08)	(0.75 to 1.56)	(0 · 57 to 1 · 30)	(0.66 to 1.30)	(0 · 85 to 2 · 94)
1 · 13	1 · 18	1 · 30	Cita	0.64	0 · 70	1 · 09	0.96	0 · 78	0.89	0.91	0 · 79	0.91	0.60	0 · 97	0 · 77	0.83	1 · 40
(0 · 88 to 1 · 47)	(0 · 93 to 1 · 49)	(0 · 88 to 1 · 93)		(0.47 to 0.87)	(0 · 51 to 0 · 95)	(0 · 85 to 1 · 42)	(0.76 to 1.21)	(0 · 57 to 1 · 06)	(0.64 to 1.23)	(0.68 to 1.21)	(0 · 49 to 1 · 32)	(0.71 to 1.17)	(0.41 to 0.87)	(0 · 74 to 1 · 25)	(0 · 53 to 1 · 13)	(0.64 to 1.07)	(0 · 78 to 2 · 48)
1 · 20	1 · 24	1 · 37	1.06	Clom	1 · 10	1 · 71	1·49	1 · 22	1·40	1 · 41	1 · 24	1 · 42	0 · 94	1 · 51	1 · 21	1 · 29	2·20
(0 · 91 to 1 · 59)	(0 · 98 to 1 · 58)	(0 · 93 to 2 · 04)	(0.82 to 1.38)		(0 · 80 to 1 · 51)	(1 · 27 to 2 · 29)	(1·16 to 1·90)	(0 · 88 to 1 · 67)	(1·00 to 1·92)	(1 · 05 to 1 · 91)	(0 · 76 to 2 · 00)	(1 · 12 to 1 · 79)	(0 · 62 to 1 · 41)	(1 · 15 to 1 · 96)	(0 · 83 to 1 · 73)	(0 · 99 to 1 · 67)	(1·22 to 3·90)
1 · 06	1 · 10	1 · 21	0.93	0.88	Dulo	1 · 56	1·37	1 · 12	1 · 28	1·30	1 · 13	1 · 30	0.86	1 · 38	1 · 10	1 · 18	1 · 99
(0 · 82 to 1 · 37)	(0 · 84 to 1 · 42)	(0 · 81 to 1 · 81)	(0.71 to 1.22)	(0.66 to 1.18)		(1 · 19 to 2 · 01)	(1·06 to 1·73)	(0 · 80 to 1 · 53)	(0 · 91 to 1 · 75)	(0·96 to 1·72)	(0 · 69 to 1 · 83)	(1 · 02 to 1 · 63)	(0.57 to 1.29)	(1 · 04 to 1 · 80)	(0 · 76 to 1 · 59)	(0 · 92 to 1 · 49)	(1 · 13 to 3 · 52)
0.90	0.93	1.03	0 • 79	0 · 75	0.85	Esci	0 · 87	0·71	0.81	0.83	0·72	0.83	0.55	0.88	0 · 70	0·75	1 · 27
(0.71 to 1.14)	(0.74 to 1.17)	(0.70 to 1.51)	(0 • 65 to 0 • 97)	(0 · 58 to 0 · 97)	(0.67 to 1.08)		(0 · 70 to 1 · 09)	(0·53 to 0·96)	(0.60 to 1.11)	(0.63 to 1.08)	(0·45 to 1·18)	(0.67 to 1.03)	(0.37 to 0.81)	(0.69 to 1.12)	(0 · 49 to 1 · 00)	(0·60 to 0·94)	(0 · 73 to 2 · 25)
1 · 20 (0 · 99 to 1 · 48)	1 · 25 (1 · 06 to 1 · 48)	1·38 (0·97 to 1·97)	1.06 (0.87 to 1.29)	$\begin{array}{c} 1 \cdot 00 \\ (0 \cdot 81 \text{ to } 1 \cdot 24) \end{array}$	1 · 14 (0 · 91 to 1 · 44)	1·34 (1·12 to 1·61)	Fluo	0.82 (0.64 to 1.04)	0·94 (0·72 to 1·20)	0 · 95 (0 · 77 to 1 · 16)	0.83 (0.54 to 1.30)	0.95 (0.83 to 1.09)	0.63 (0.44 to 0.90)	1.01 (0.84 to 1.21)	0.81 (0.60 to 1.09)	0.87 (0.74 to 1.01)	1 · 46 (0 · 85 to 2 · 53)
1 · 20	1 · 25	1 · 38	1.06	1 ·00	1 · 14	1 · 34	1.00	Fluv	1 · 14	1 · 16	1.01	1 · 16	0 · 77	1 · 23	0.99	1.06	1 · 78
(0 · 91 to 1 · 61)	(0 · 99 to 1 · 59)	(0 · 93 to 2 · 07)	(0.82 to 1.39)	(0 · 76 to 1 · 32)	(0 · 85 to 1 · 54)	(1 · 03 to 1 · 75)	(0.80 to 1.25)		(0 · 84 to 1 · 56)	(0 · 89 to 1 · 52)	(0.62 to 1.71)	(0 · 90 to 1 · 49)	(0 · 51 to 1 · 17)	(0 · 94 to 1 · 63)	(0.69 to 1.42)	(0.80 to 1.38)	(1 · 00 to 3 · 24)
1 · 07	1 · 11	1·23	0.94	0 · 89	1.01	1 · 19	0.89	0.89	Miln	1 · 02	0.88	1.02	0.67	1.08	0.86	0.93	1 · 56
(0 · 80 to 1 · 44)	(0 · 86 to 1 · 43)	(0·81 to 1·85)	(0.71 to 1.26)	(0 · 67 to 1 · 19)	(0.74 to 1.38)	(0 · 90 to 1 · 58)	(0.70 to 1.13)	(0.67 to 1.17)		(0 · 75 to 1 · 37)	(0.54 to 1.44)	(0.80 to 1.31)	(0.45 to 1.03)	(0.82 to 1.44)	(0.60 to 1.25)	(0.71 to 1.22)	(0 · 89 to 2 · 84)
0.93	0.97	1 · 07	0.82	0 · 78	0.88	1.04	0 • 78	0 • 78	0 · 87	Mirt	0 · 87	1.00	0.66	1.06	0.85	0·91	1 · 53
(0.72 to 1.21)	(0.77 to 1.21)	(0 · 73 to 1 · 57)	(0.65 to 1.05)	(0 · 60 to 1 · 01)	(0.67 to 1.16)	(0.82 to 1.32)	(0 • 64 to 0 • 94)	(0 • 60 to 0 • 99)	(0 · 66 to 1 · 15)		(0 · 55 to 1 · 41)	(0.82 to 1.23)	(0.45 to 0.99)	(0.84 to 1.35)	(0.62 to 1.18)	(0·73 to 1·13)	(0 · 89 to 2 · 72)
1 · 15 (0 · 76 to 1 · 76)	1 · 19 (0 · 80 to 1 · 78)	$\begin{array}{c} 1 \cdot 32 \\ (0 \cdot 80 \text{ to } 2 \cdot 20) \end{array}$	1.01 (0.67 to 1.54)	0.96 (0.63 to 1.45)	1.09 (0.71 to 1.68)	1 · 28 (0 · 86 to 1 · 94)	0.96 (0.66 to 1.40)	0.95 (0.63 to 1.46)	1 · 07 (0 · 70 to 1 · 67)	1 · 23 (0 · 82 to 1 · 86)	Nefa	1 · 15 (0 · 74 to 1 · 78)	0.75 (0.43 to 1.32)	1 · 23 (0 · 77 to 1 · 90)	0.98 (0.57 to 1.64)	1 · 04 (0 · 66 to 1 · 65)	1 · 76 (0 · 90 to 3 · 56)
1 · 01 (0 · 82 to 1 · 24)	$\begin{array}{c} 1{\cdot}05 \\ (0{\cdot}89\text{to}1{\cdot}23) \end{array}$	1 · 16 (0 · 81 to 1 · 64)	0 ⋅ 89 (0 ⋅ 72 to 1 ⋅ 09)	0.84 (0.68 to 1.03)	0.96 (0.76 to 1.19)	1 · 12 (0 · 93 to 1 · 35)	0 • 84 (0 • 73 to 0 • 95)	0 • 84 (0 • 67 to 1 • 04)	0·94 (0·75 to 1·18)	1.08 (0.89 to 1.30)	0 ⋅ 88 (0 ⋅ 60 to 1 ⋅ 27)	Paro	0.66 (0.46 to 0.94)	1.06 (0.88 to 1.28)	0.85 (0.63 to 1.15)	0.91 (0.77 to 1.07)	1.53 (0.90 to 2.66)
1 · 44 (1 · 02 to 2 · 04)	$1.50 \ (1.07 \text{ to } 2.07)$	1.65 (1.05 to 2.60)	1 · 27 (0 · 92 to 1 · 75)	1 · 20 (0 · 84 to 1 · 70)	1·36 (0·95 to 1·95)	1.60 (1.14 to 2.23)	1 · 20 (0 · 88 to 1 · 62)	1 · 20 (0 · 83 to 1 · 71)	1·35 (0·92 to 1·95)	1 · 54 (1 · 09 to 2 · 17)	$\begin{array}{c} 1\cdot 25\\ (0\cdot 77 \text{ to } 2\cdot 01)\end{array}$	1 · 43 (1 · 05 to 1 · 94)	Rebo	1.61 (1.09 to 2.34)	1·29 (0·81 to 2·01)	1·38 (0·94 to 1·99)	2·32 (1·24 to 4·41)
1 · 07	1 · 11	1·23	0.95	0.90	1.02	1 · 20	0 ⋅ 89	0.89	1.00	1 · 15	0.93	1.07	0 · 75	Sert	0 · 80	0.86	1·45
(0 · 85 to 1 · 37)	(0 · 92 to 1 · 35)	(0·85 to 1·79)	(0.76 to 1.18)	(0.71 to 1.13)	(0.79 to 1.32)	(0 · 97 to 1 · 48)	(0 ⋅ 76 to 1 ⋅ 00)	(0.70 to 1.13)	(0.77 to 1.30)	(0 · 93 to 1 · 43)	(0.63 to 1.37)	(0.90 to 1.26)	(0 · 54 to 1 · 00)		(0 · 58 to 1 · 11)	(0.70 to 1.05)	(0·84 to 2·54)
1 · 36	1 · 41	1 · 56	1 · 20	1 · 13	1 · 28	1 · 51	1 · 13	1 · 13	1 · 27	1 · 45	1 · 18	1 · 35	0 · 94	1 · 26	Traz	1 · 07	1.80
(0 · 99 to 1 · 87)	(1 · 06 to 1 · 86)	(1 · 04 to 2 · 31)	(0 · 88 to 1 · 63)	(0 · 83 to 1 · 54)	(0 · 92 to 1 · 79)	(1 · 12 to 2 · 04)	(0 · 87 to 1 · 46)	(0 · 82 to 1 · 55)	(0 · 91 to 1 · 76)	(1 · 09 to 1 · 94)	(0 · 75 to 1 · 84)	(1 · 04 to 1 · 75)	(0 · 64 to 1 · 39)	(0 · 95 to 1 · 67)		(0 · 77 to 1 · 47)	(0.98 to 3.38)
1 · 01 (0 · 82 to 1 · 26)	$\begin{array}{c} 1{\cdot}05\\ (0{\cdot}87to1{\cdot}27) \end{array}$	1 · 16 (0 · 82 to 1 · 65)	0.90 (0.72 to 1.10)	0.85 (0.67 to 1.06)	0.96 (0.77 to 1.21)	1 · 13 (0 · 93 to 1 · 37)	0.84 (0.73 to 0.97)	0 · 84 (0 · 66 to 1 · 07)	0.95 (0.73 to 1.23)	1.09 (0.89 to 1.33)	0 ⋅ 88 (0 ⋅ 59 to 1 ⋅ 30)	1.01 (0.86 to 1.17)	0 · 70 (0 · 51 to 0 · 97)	0.94 (0.78 to 1.13)	0 · 75 (0 · 57 to 0 · 98)	Venl	1.69 (1.01 to 2.86)
0·73	0 · 76	0.83	0.64	0.61	0.69	0.81	0.60	0.60	0.68	0 · 78	0.63	0 · 72	0.51	0.68	0·54	0·72 1	1
(0·42 to 1·26)	(0 · 44 to 1 · 29)	(0.45 to 1.54)	(0.37 to 1.11)	(0.35 to 1.05)	(0.40 to 1.20)	(0.47 to 1.39)	(0.36 to 1.02)	(0.34 to 1.05)	(0.39 to 1.20)	(0 · 45 to 1 · 34)	(0.33 to 1.19)	(0 · 43 to 1 · 22)	(0.28 to 0.92)	(0.39 to 1.16)	(0·30 to 0·95)	(0·43 to 1·19)	Vort

Assumptions underlying network metaanalysis

Assumptions underlying network metaanalysis

When you find the studies

In the outset

The treatments we compare are *in principle* jointly randomizable

They have the same indication, I can imagine a mega-trial with all treatments being compared etc The groups of studies that compare them do not differ with respect to the distribution of effect modifiers

You can test this assumption if you have enough studies per comparison When you extract the outcomes

Direct and indirect treatment effects are in statistical agreement

Various statistical tests

Example of a living network metaanalysis

2nd line treatments of advanced non-small cell lung cancer

2nd line treatments of advanced non-small cell lung cancer

- Each year, between 2009 and 2015, the evidence covered by all existing systematic reviews was consistently incomplete
 - 40% to 66% of treatments missing
 - 45% to 70% of trials missing.
 - 30% to 58% of patients missing

Challenges in the process of living network meta-analyses

The concept of living network meta-analysis

Work-load for the NSCLC example

Investing a massive amount of resources to produce a NMA and not maintaining it afterwards does not make sense

Issues with updating network meta-analyses

- The initial research question might become outdated over time
- Adding new treatments might threaten the validity of the NMA assumptions
 - treatments evaluated only in one trial and connected weakly to the network often introduce heterogeneity and incoherence
- How to exploit any type of information within the NMA framework
- How useful are in the network old treatments evaluated in possibly lowquality studies?

Building a research community

Any individuals interested in a given condition Identification of new treatments and trials

Group of experts in a given condition (clinicians, trialists and members of cooperative groups)

- + Validation of reported treatments and trials
- + Definition of nodes in the network of trials
- + Screening and selection of records

Group of trained reviewers

- + Manual search of additional sources
- + Contact trialists
- + Identifying multiple reports from the same trial
- + Data extraction
- + Assessment of risk of bias

Building a research community

- Developing a living community for one condition
- A community including systematic reviewers but also clinicians, patients, trialists, methodologists, statisticians and guidelines experts
- Leveraging this community to improve beyond evidence synthesis the whole production of evidence

Future work on LNMAs

Treatments for chronic plaque psoriasis

Methodological work

- Development of formal statistical and non-statistical criteria upon the inclusion and exclusion of treatments at each iteration
 - trade-off between increasing the amount of data and threating the assumptions of the analysis
- Development of methods allowing to share information across networks and to incorporate information from external evidence
 - networks with sparse data often fail to provide useful and meaningful results
- How new evidence can affect the results
 - can results change?

http://livenetworkmetaanalysis.com

Home What? Why? How?

Contribute About

When?

We need a comprehensive, up-to-date synthesis of evidence for all treatments available for a given disease

For many conditions, multiple competing treatments are available, many of which have been assessed in randomized trials. Clinicians and patients who are making medical decisions need to know which treatments work best among all treatments available for the condition of interest. They increasingly use meta-analyses that synthesize the results of randomized trials to inform the relative efficacy and safety of the different treatments.

But conventional meta-analyses do not provide an exhaustive up-to-date synthesis of all available treatments, and thus prevent from answering easily to the real questions of interest.

We propose to switch:

imulative <u>k m</u>eta-analysis

- from a series of conventional meta-analyses focusing on specific treatments (many treatments being not considered), performed at a given time and frequently out-of-date
- to a single systematic review and evidence synthesis (with meta-analyses and network meta-analyses) covering all treatments and systematically updated when new trial results become available

We call this approach "live cumulative network meta-analysis".

References

- Créquit P, Martin-Montoya T, Attiche N, Trinquart L, Vivot A, Ravaud P. Assessing the feasibility of live cumulative network meta-analysis by considering the pace of evidence generation. JCE 2019
- Nikolakopoulou A, Mavridis D, Furukawa TA, et al. Living network meta-analysis compared with pairwise meta-analysis in comparative effectiveness research: empirical study. BMJ. 2018;360:k585.
- Créquit P, Trinquart L, Yavchitz A, Ravaud P. Wasted research when systematic reviews fail to provide a complete and up-to-date evidence synthesis : the example from lung cancer BMC Med. 2016; 14:8.
- Salanti G. Indirect and mixed-treatment comparison, network, or multiple-treatments meta-analysis: many names, many benefits, many concerns for the next generation evidence synthesis tool. ResSynthMeth. 2012;3(2):80–97.
- Efthimiou O, Mavridis D, Debray TPA, et al. Combining randomized and non-randomized evidence in network meta-analysis. Stat Med. 2017;36(8):1210–1226.
- Chaimani A, Caldwell DM, Li T, Higgins JPT, Salanti G. Additional considerations are required when preparing a protocol for a systematic review with multiple interventions. Journal of Clinical Epidemiology 2017; 83:65-74
- Créquit P, Chaimani A, Yavchitz A, Attiche N, Cadranel J, Trinquart L, Ravaud P. Comparative efficacy and safety of second-line treatments for advanced non-small cell lung cancer with wild-type or unknown status for epidermal growth factor receptor: a systematic review and network meta-analysis BMC Med. 2017; 15(1):193.
- Sbidian E, Chaimani A, Garcia-Doval I, Do G, Hua C, Mazaud C, Droitcourt C, Hughes C, Ingram JR, Naldi L, Chosidow O, Le Cleach L. Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis. Coch Dat Syst Rev 2017;12.
- Cipriani A, Higgins JPT, Geddes JR, Salanti G. Conceptual and technical challenges in network metaanalysis. Ann Intern Med. 2013;159(2):130-13

Planning for a Living Network Meta-Analysis of Treatments for Rheumatoid Arthritis

Dr. Glen Hazlewood & Dr Samuel Whittle March 2019

Rationale

- RA is common, and causes pain, disability and reduced quality of life
- Disease-modifying drugs (DMARDs) are effective in reducing symptoms and signs of RA and improve long-term outcomes
- In recent years, novel DMARDs (bDMARDs & tsDMARDs) have joined older drugs (csDMARDs) as potential therapies for individuals with RA
- There are now multiple therapeutic options, with varying effects on important outcomes, and different adverse effect profiles
- New drugs continue to emerge

Rationale

- The array of treatment options makes NMA an attractive option
- A living approach to evidence synthesis is important in RA:
 - High burden of disease
 - Rapidly-evolving evidence base
 - Up-to-date synthesis of all available therapies is important for shared decision-making in this chronic disease
- Opportunity to develop living treatment guidelines

Existing NMA

Methotrexate monotherapy and methotrexate combination therapy with traditional and biologic disease modifying antirheumatic drugs for rheumatoid arthritis: A network metaanalysis (Review)

Hazlewood GS, Barnabe C, Tomlinson G, Marshall D, Devoe DJA, Bombardier C

Haziewood 65, Barnabe C, Tomlinson G, Karnhall D, Devce DA, Bombardier C. Methotreszte monotherapy and methotreszte combination therapy with traditional and biologic disease modifying anti-rheumatic drugs for rheumatoid arthritis: A network meta-analysis. *Cochrome Dotabase of Systematic Reviews* 2016, Issue B. Art. No.: CD010227. DOI:10.1002/1451585.CD010227. pub2.

www.cochranelibrary.com

Living Guidelines Project in Rheumatoid Arthritis

- Collaborative approach to ongoing evidence reviews: CRA, Cochrane, Australia & NZ (ANZMUSC), ACR
- Each group makes their own recommendations
- Opportunity to add other collaborators as project evolves

Globalizing the evidence, localizing the decision

Planned methods

- RCTs, adults with RA, any DMARD, outcomes under discussion
- **PICO sorting** 3 groups (MTX-naive, MTX-IR, bDMARD-IR)
- Covidence for PICO annotation, data extraction, RoB assessment
- Data synthesis: Random-effect Bayesian network meta-analysis
- Node-splitting analysis for consistency; meta-regression for heterogeneity

Data analysis - automated meta-analyses and network meta-analyses

Question 1: It is an RCT?	
Question 2: Is the population adults with rheumatoid arthritis?	
Question 3: Is the intervention a DMARD?	RCTs of non-DMARDs (future classification)
Question 4: Are corticosteroids/glucocorticoids being used as p	part of the intervention?
Question 5: Is reduction of treatment the randomized intervention	on?
Question 6: What type of population is included?	DICO corting
1) DMARD naïve/minimally exposed;	PICO sorting
2) DMARD inadequate response;	
3) Biologics inadequate response;	
4) Mixed populations;	

Budesonide inhaled via Turbuhaler: a more effective treatment for asthma than beclomethasone dipropionate via Rotahaler [1995261770]

BACKGROUND: Chlorofluorocarbon-propelled metered dose inhalers are facing a worldwide ban. Dry powder inhalers have been developed for the agents used in treatment of asthma. OBJECTIVE: Our objective was to compare the effects of two inhaled glucocorticosteroids in dry power inhalers: budesonide (delivered via Turbuhaler) and beclomethasone dipropionate (delivered via Rotahaler). METHODS: A randomized, crossover study with two steroid-treatment periods of 8 weeks, At the end of the study, the treatment with the inhaled steroid was stopped for 4 weeks. Sixteen adult patients with moderately severe asthma participated. Before the study all patients were treated with an inhaled steroid in a median dose of 0.60 mg/day (range 0.15-0.80); during the study they received 0.20 mg twice daily. Peak expiratory flow rate was measured twice daily at home throughout the study, lung function was assessed every fourth week and airway responsiveness was measured before and after each period. Preference concerning efficacy and inhaler type was assessed at the end of the study. RESULTS: Twelve patients completed the study. Lung function, airway responsiveness, and symptoms deteriorated significantly in the steroid-free washout period; this period had to be shortened in 5/12 patients. Mean morning peak expiratory flow was significantly higher during budesonide treatment than during beclomethasone dipropionate treatment, the difference being 17 L/min (95% C.I.: 2-32 L/min, P = .026). Airway responsiveness improved 1.1 doubling concentrations after budesonide treatment, but decreased 0.3 doubling concentrations after beclomethasone dipropionate treatment. The difference between the values after budesonide and beclomethasone dipropionate treatment was 1.4 doubling concentrations (95% C.I.: 0.4-2.4 doubling concentrations, P = .033). Forced expiratory flow in one second improved slightly more during budesonide than during beclomethasone treatment. The difference was 4.3% predicted (95% C.I.: -0.7-9.3%). Most patients reported budesonide Turbuhaler to be more effective (10 versus 0) and easier to use (11 versus 1) than beclomethasone dipropionate Rotahaler, CONCLUSIONS: As a consequence of the difference in local potency of the steroids and the fact that Turbuhaler deposits more drug particles in the lung than

PICO Annotation

Initial Search Results

Covidence Data Extraction Forms

-													
	Add Characteristic												
	Characteristic	Arm 1	Arm 2	Arm 3	Arm 4	Arm 5	Arm 6	Arm 7	Arm 8	Arm 9	Arm 10	Overall	
n	Age	50.9	52.5	48.9								50.9	
3	Female	0.78	0.84	0.76								0.7	
	Disease duration, years (mean/median)	7.9	5.8	6.9								6.9	
	Proportion RF	0.88	0.88	0.89				1				0.8	
	Proportion prior MTX												
	Proportion prior DMARD including MTX												
S	Number of prior DMARDs including MTX												
3	Proportion prior TNF												
	Proportion prior non-TNF biologic												
	Proportion taking MTX during study												
	Dose MTX target												
	Dose MTX min												
	Dose MTX max												
	Mean MTX dose	-		1				1		1			

Training

- Canadian and Australian early career rheumatologists and trainees
- Initial e-mail expression of interest
- Incentives:
 - Learning
 - Listed as collaborator/author
 - Individual thank-you letter of contribution?

RA Guidelines Reviewer Expression of Interest

Participation in this review will involve various tasks in the systematic review process such as screening articles for inclusion and data extraction. Please fill out the following form as accurately as possible. This will allow us to match people to the appropriate tasks. Thanks for your interest!

Email address*

Valid email address

This form is collecting email addresses. Change settings

Name

Short answer text

Experience with reviews (Check all that apply)

No experience

Completed course(s) in systematic reviews

Participated in a systematic review

Participated in a systematic review of randomized trials

Participated in a Cochrane review

Published a systematic review as a co-author

Published a systematic review as lead/senior co-author

Cochrane classmate

Classmate enables you to use the Cochrane Crowd tasks as learning activities Cochrane Classmate

Bringing citizen science to evidence-based medicine teaching

Cochrane Classmate is a trainers' toolkit that lets you create exciting, interactive tasks to help your EBM students to learn about evidence production.

How it work

Create a group or teams in Classmate

Choose fun learning activities

Set challenges and competitions

Make a real difference as part of our citizen science 'crowd'

See how individual students are progressing

Get your students learning through interactive training

The benefits

My students are rewarded with certificates of achievement

We're helping Cochrane find the evidence needed to answer questions about treatments

Automating the analyses

- Planned project for PhD student (Kamso Mujaab)
- Goal: Take the data in covidence and automate the NMA analyses in R, including:
 - Main results
 - All data necessary to inform the quality of evidence ratings (GRADE), including inconsistency testing
 - Formatting into a summary of findings table

Auto-generation of SoF tables

A		B	C	D	E	F	G	н	1	1	
Age						0.00					
Gender											
Crew oppi											
Interventions					-				-		
Intel Ventoorta	Trial 1		Trial 2	Trial 3	Trial 4						
	TTART C		11912	1141.3	1160.4						
Outcomes				-		_	_				
MOAE										_	
WDAE		Baseline		6 months		12 months					
		0	N	n	N	0	N				
Trial 1		123	234	345	458	567	678				
Trial 2		789	091	101	112	131	415				
Trial 3		100	001	101	112	141	410				
Trial 4											
11014											
HAD											
rinu.		Baseline			6 months			12 months			
		mean	50	N	mean	50	N	mean	-		
Trial 1			00	in in	2	80	4	4	00		
Trial 2		1 7	2	3	10	3	12	13	50 5 14	N 6 15	
Trial 3			0		10		16	10	14	10	
Trial 4											
Ingl-4											
Manage Theorem											
Megan Thomas									_	_	
Study Identifica	aor				-				_		
Sponsorship											
source											
Country											
Setting											
Comments											
Authors name											
Institution											
Email											
Address											
Methoda	New protection of the second					ia					
Design	Randomized controlled trial			_			-				
Group	Parallel group										
a.cop											
Population	-		and the second	_			-	and the second second	-		
Inclusion criteri											
Exclusion oriter											
Circusion criter											
	dies Huffstutter 2017	Heimans 2016 Fleischmann	2017 Atteritano		+						

NMA-SoF table example 1

Inte Con Out	ient or population: Co inventions: Belanced o imparator (reference): Icome: Mortality: range ting(s): Inpatient	rystafioid (BC), Albu Low-molecular weigt	nin, High-molecular-w nt hydroxyethyl starch	eight hydroxyethy	starch (H-HES), Sali		- Arres		
Tota	al studies: 6 RCT	Relative effect**	Articipate	d absolute effect*	**(95% Crl)	Certainty of	Ranking	Interpo	
	al Participants: 8308	(95% Crl)	Without intervention	With intervention	Difference	evidence	(85% Crt)	of Findle	
•	Balanced crystalloid (2 RCT, 8H5 participants)	675 dilli to CHI) Televit colimite	182 per 1080	101 per 100	3 pe 1000 lineer (from 57 forear to 1 lineer)	0000 Boleria Da tridadian	2.00 (1.00 10 4.00)	Petadoy	
•	Albumen (No direct evidence, indirect evidence uny)	0.79 studietis takį Natausti salimatie	182 per 1080	148,000 1000	37 per 1932 (kener (Anne 6), kener (n. 88 (norm)	0.000 Lee Seat Specific at	2.86 (1.01 to 5.00)	medi	
•	HUHES No direct avidence, Indexit evidence singl	435 (10) = 125 Network united	180 per 1080	164 per 1000	ill per 100) fearer (fun 39 fearer to 40 mon)	0000 Lee See is represent, and Scientification	A.DD QUIN N. K.DA	Probabily	
•	Saline sclutice (4 RCT 7642 periopante)	1,54 (5,12° to 1,21) Network extinuity	182 per 1000	180.per 1000	6.per 1020mms (han 20 beer to 35 mm)	198460 Bodinte Da la familiari Indiadana' ad familiary	4.00 r1.00 to 4.00	Probably	
•	Gelater No driect invidence, Indirect evidence smjt	5.00 (0.44 to 2.25) National particular	182 per 1080-	180 pa / 1923	0 per 1000 fever (frantit2 fever in 140 name)	GCCC VeryLee Sectorycolor, ed	LID (1.51 to 6.00)	Datasy	
-		Reference Companies	Nonetratio	Northeast	N estrate	Reference Companying	1.10	Rate	

(BATA Multist forum modes of address or catalate in the authority)

GRADE Summary of findings table

Extracted data

Auto-generation of analyses necessary to inform GRADE quality appraisal

 Rating the quality of evidence requires human judgements, but these can be facilitated by automated data summaries for the relevant GRADE domains, and even algorithms to provide 'expected' judgements based on set criteria

Appendix D – GRADE Quality Appraisal

								,		T				
			DIRECT EVIDENCE							INDIRE	CT EVIDENCE	NETWORK META-ANALYSIS		
Intervention Comparator		Number of trials for	Treatment effect			Quality of Evide	ence			Treatment effect	Р	Quality of	Treatment effect	Quality of
	d irect comparison	(95 % Crl)	Risk of bias	Inconsistency	Indirectness	Imprecision	Publicati on bias	OVERALL	(95 % Cri)	(indirect -direct)	evidence	(95 % Crl)	evidence	
MTX-naïve: ACR50 response			OR		1					OR			OR	
MTX+ABAT (IV)	MTX	1	1.83 (1.29 to 2.61)						High	NE			1.84 (1.01 to 3.42)	High
MTX+ABAT (sc)	MTX	1	1.94 (1.15 to 3.29)						High	NE			1.98 (0.94 to 3.97)	High
MTX+ADA	MTX	4	2.11 (1.76 to 2.51)						High	NE			2.10 (1.52 to 2.87)	High
IM/sc MTX+ADA	MTX	0	NA							2.22 (0.80 to 6.06)		Moderate (imprecision)	2.22 (0.80 to 6.06)	Moderate (imprecision)
MTX+CTZ	MTX	1	1.49 (1.10 to 2.04)	Single study with high amount of incomplete outcome data (C- EARLY)					Moderate (study limitations)	NE			1.49 (0.83 to 2.68)	Moderate (study limitations)
MTX+ETN	MTX	2	2.76 (1.74 to 4.40)						High	3.87 (0.62 to 27.37)	0.72	Low (extreme imprecision)	3.00 (2.02 to 4.59)	High
LTV-COL (-1	1.000	1.	1 22 /0 04 - 2 001	Planta and code	1			l	**	-	-		1 33 (0 70 - 3 70)	**

Table D1. Treatment effects for direct, indirect and network meta-analysis evidence and GRADE quality appraisal

Challenges & Consideratons

- How do we create methods for surveillance for new drugs (eg experimental or novel therapies with names that do not appear in our original search strategy)?
- How do we handle the situation in which a new trial might mean that a trial that was previously excluded due to lack of an indirect evidence link, is now eligible due to a common comparator? Is this a matter of classifying exclusions in a particular way so that they can be easily searched again when the network changes, or some other way?
- What is the best method for balancing machine and human tasks once we enter living mode: ie can we use the data from our Crowd tasks to train machine automation tools for ongoing tasks in the future? How would this look in practice?
- What is the best method for screening new citations when in living mode: manual vs automation (if plans to use trained Crowd, how to ensure durability of participation and acquired skills)? Are there certain tasks that are likely to be better suited to humans vs machines?

Challenges & Consideratons

- How to ensure that we maintain a durable workforce with sufficient expertise to continue the review in living mode, assuming that it may remain in this mode for years?
- What areas specific to LNMAs are amenable to automation?
- Need for a priori decisions on when to incorporate new evidence, when to re-publish (eg if change in major outcome or a threshold for new interventions), search frequency & when to take out of living mode; also, the frequency of updating of the review scope and methods (eg search terms, eligibility criteria)
- Where to host our data to 'future proof' the current work and prevent the need for duplication of work in the future (eg is Covidence the best data repository?); including clear rules for 'ownership' of the data and access as the work evolves

The team

- Cochrane: Jordi Pardo, Peter Tugwell
- Australia/NZ (ANZMUSC): Rachelle Buchbinder, Samuel Whittle
- ACR: Liana Fraenkel, Amy Turner, Elie Akl
- Canada:
 - Pauline Hull, Megan Thomas, Kamso Mujaab
 - RA guideline panel: Michel Zummer, Sharon LeClercq, Carter Thorne, Cheryl Barnabe, Claire Bombardier, Peter Tugwell, Nick Bansback, Janet Pope, Claire Barber, Regina Taylor-Gjevre, Mark Tatangelo, Jordi Pardo, Orit Schieir, Pooneh Akhavan, Nancy Santesso, Laurie Proulx, Shahin Jamal, Dianne Mosher, John Thomson, Caylib Durand, Maysoon Eldoma, Paul Haraoui, Anne Dooley, Majed Khrashi, Vivian Bykerk, Dawn Richards

This webinar was presented on behalf of the **Living Evidence Network**

To join the Living Evidence Network email: <u>lsr@cochrane.org</u>

Trusted evidence. Informed decisions. Better health.

